BRIEF COMMUNICATION

LaNb $\mathbf{2}_{6} \mathrm{Cl}$: A New Lanthanum Halo Niobate

J. C. CALABRESE, L. H. BRIXNER, and C. M. FORIS
Central Research and Development Department,* E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898

Received February 10, 1983

Abstract

$\mathrm{LaNb}_{2} \mathrm{O}_{6} \mathrm{Cl}$ has been prepared by the interaction of LaOCl and $\mathrm{Nb}_{2} \mathrm{O}_{5}$. It crystallizes in the orthorhombic space group Pnma with $a=9.752, b=7.306, c=8.365 \AA$, and the structure was refined to an R value of 1.9%. The most unusual feature of the structure is the participation of one Cl atom in the octahedral environment of $\mathrm{Nb}(2)$ combined with one short $\mathrm{Nb}-\mathrm{O}$ distance.

We have recently reported on the structure of rare earth halo tungstates, where W is only coordinated to oxygen. In La_{3} $\mathrm{WO}_{6} \mathrm{Cl}_{3}$ (1), the tungsten has trigonally prismatic six coordination, while in La $\mathrm{WO}_{4} \mathrm{Cl}(2)$ it is five coordinated in the form of a trigonal bipyramid, and in $\mathrm{GdWO}_{4} \mathrm{Cl}$ (3) it is tetrahedral. Similar compounds also exist for molybdenum, but it appears that no such compositions are described for niobium. Therefore, we prepared the first halo niobate of lanthanum and determined its structure in detail.

Experimental and Results

A. Preparation

$\mathrm{LaNb}_{2} \mathrm{O}_{6} \mathrm{Cl}$ was prepared from the components LaOCl and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ in an evacuated quartz tube. LaOCl was made by dissolving high purity $\mathrm{La}_{2} \mathrm{O}_{3}$ (99.99% purity, Research Chemical Corp.) in HCl , taking the solution to dryness, and firing the resulting product

[^0]at $900^{\circ} \mathrm{C}$ in air for 6-10 hr. $\mathrm{Nb}_{2} \mathrm{O}_{5}$ obtained from the supplier (optical grade Kawecki/ Berylco) was fired at $1000^{\circ} \mathrm{C}$ for $1-2 \mathrm{hr}$ in air before use. The stoichiometric quantities (totaling less than 10.000 g) of LaOCl and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ were sealed into the ($1-\mathrm{cm}$ diameter, $20-\mathrm{cm}-\mathrm{long}$) quartz tube and fired at $900^{\circ} \mathrm{C}$ for $8-12 \mathrm{hr}$. When the tube was opened, HCl could be detected, suggesting that despite the careful drying and firing of the components, trace quantities of $\mathrm{H}_{2} \mathrm{O}$ must have been released from the chemicals or the reaction tube. It is conceivable that the HCl actually acted as a transport agent and helped in the formation of the pale amber single crystals used for the structure determination. Although powder patterns of material obtained in this manner could be completely indexed, small impurities of unknown composition were observed occasionally.

B. X-Ray Studies

1. Powder examination. The X-ray powder diffraction pattern of $\mathrm{LaNb}_{2} \mathrm{O}_{6} \mathrm{Cl}$ was obtained with a focusing camera (radius 40

TABLE I
Powder Diffraction Data for $\mathrm{LaNb}_{2} \mathrm{O}_{6} \mathrm{Cl}$

I / I_{0}	h	k	l	d (obs)	$d($ calc $)$
60	1	1	0	6.3086	6.3491
5	1	0	1	5.4758	5.5028
30	0	2	0	4.8605	4.8758
5	1	1	1	4.7840	4.7924
60	1	2	0	4.2042	4.2125
20	2	0	0	4.1750	4.1825
15	0	2	1	4.0501	4.0557
40	2	1	0	3.8391	3.8438
65	1	2	1	3.6477	3.6494
	0	0	2		3.6531
30	2	1	1	3.4006	3.4018
100	2	2	0	3.1720	3.1746
100	1	1	2	3.1658	3.1664
75	1	3	0	3.0291	3.0298
100	0	2	2	2.9226	2.9236
20	2	2	1	2.9126	2.9116
20	1	2	2	2.7585	2.7599
95	2	0	2	2.7515	2.7514
45	3	1	0	2.6815	2.6809
25	2	1	2	2.6483	2.6480
15	3	0	1	2.6054	2.6051
30	2	3	0	2.5672	2.5666
45	3	1	1	2.5175	2.5168
15	0	4	0	2.4392	2.4379
80	2	3	1	2.4216	2.4215
	3	2	0		2.4205
30	2	2	2	2.3967	2.3962
40	1	4	0	2.3403	2.3406
	1	0	3		2.3383
30	1	3	2		2.3321
5	0	4	1	2.3130	2.3126
30	1	1	3	2.2745	2.2739
15	0	4	1	2.2298	2.2290
	2	3	2.1797	2.1788	

mm) of Guinier-Hägg type. The radiation was monochromatic $\mathrm{CuK} \alpha,(\lambda=1.5405 \AA)$, and $\operatorname{Si}(a=5.4305 \AA)$ was used as an internal standard. Line positions on the film were determined to $\pm 5 \mu \mathrm{~m}$ with a David Mann film reader (a precision screw, split image comparator). Intensities were estimated by oscilloscopic comparison of film density with the strongest line of the pattern. Refined cell dimensions were obtained by a least squares procedure (local program).

TABLE II
Fractional Coordinates ($\times 10000$) and Isotropic Thermal Parameters

Atom	x	y	z
$\mathrm{La}(1)$	$3182.6(4)$	7500	$3114.9(4)$
$\mathrm{Nb}(1)$	5000	5000	0.0
$\mathrm{Nb}(2)$	$2653.9(6)$	2500	$2687.5(6)$
$\mathrm{Cl}(1)$	$3963(2)$	2500	$5693(2)$
$\mathrm{O}(1)$	$1692(5)$	2500	$910(5)$
$\mathrm{O}(2)$	$5055(4)$	7500	$786(5)$
$\mathrm{O}(3)$	$3960(3)$	$4453(4)$	$1992(3)$
$\mathrm{O}(4)$	$3255(3)$	$5471(4)$	$-1136(3)$

The indexed powder pattern of LaNb_{2} $\mathrm{O}_{6} \mathrm{Cl}$ is reported in Table I. The refined cell dimensions are

$$
\begin{aligned}
a & =9.752(2) \AA \\
b & =7.306(1) \AA \\
c & =8.365(1) \AA .
\end{aligned}
$$

The figures of merit $(4,5)$ for this data set are

$$
\begin{aligned}
M_{20} & =25 \\
F_{20} & =35(0.026,22) .
\end{aligned}
$$

2. Single crystal work. A crystal with dimensions $0.2 \times 0.02 \times 0.04 \mathrm{~mm}$ was placed on an Enraf-Nonius CAD4 X-ray diffractometer equipped with a graphite monochromated $\mathrm{Mo} K \alpha$ source. Preliminary search techniques confirmed the orthorhombic lattice with $a=9.748(3), b=7.292(2)$, and $c=$

TABLE III
Anisotropic Thermal Parameters ($\times 1000$)

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{La}(1)$	$9.9(2)$	$7.9(2)$	$6.7(2)$	-	$0.2(1)$	-
$\mathrm{Nb}(1)$	$6.7(3)$	$4.2(2)$	$8.0(2)$	$-0.1(2)$	$0.1(2)$	$-0.6(2)$
$\mathrm{Nb}(2)$	$7.5(3)$	$6.9(2)$	$5.4(2)$	-	$-0.2(2)$	-
$\mathrm{Cl}(1)$	$9.4(8)$	$31.7(8)$	$10.0(6)$	-	$-0.9(5)$	-
$\mathrm{O}(1)$	$12(3)$	$17(2)$	$7(2)$	-	$-2(1)$	-
$\mathrm{O}(2)$	$13(2)$	$5(2)$	$9(2)$	-	$2(1)$	-
$\mathrm{O}(3)$	$7(2)$	$7(1)$	$7(1)$	$3(1)$	$2(1)$	$2(1)$
$\mathrm{O}(4)$	$7(2)$	$7(1)$	$9(1)$	$1(1)$	$-1(1)$	$1(1)$

Fig. 1. Stereoscopic view along [001] showing the NbO_{6} chains linked by the second $\mathrm{NbO}_{5} \mathrm{Cl}$ octahedra and the $\mathrm{LaO}_{6} \mathrm{Cl}_{2}$.
8.362(2) with systematic absences compatible with Pnma (No. 62) or Pn2 ${ }_{1} a$ (No. 33). For $\mathrm{LaNb}_{2} \mathrm{ClO}_{6}$ with $Z=4$, the calculated density is $5.097 \mathrm{~g} / \mathrm{cc}$. A total of 2707 reflections were obtained with the $\theta-2 \theta$ scan made from $4^{\circ} \leq 2 \theta \leq 60^{\circ}$ with scan range ω $=0.7+0.35 \tan (\theta)$ and a speed of $2^{\circ} / \mathrm{min}$. There was no evidence of intensity fluctuation during the measurement. After the usual preliminary corrections for Lorentz polarization, the data were merged to yield 868 reflections, 768 of which with $I \geq 2 \sigma(I)$ were used for structure determination and refinement. The structure of $\mathrm{LaNb}_{2} \mathrm{O}_{6} \mathrm{Cl}$ was determined from the heavy atom method using the centric space group Pnma. Anisotropic full-matrix least squares refinement converged with $R=0.019$ and

TABLE IV
Interatomic Distances $(\AA$ í)*

		$\mathrm{Nb}(1)-\mathrm{O}(2)$	$1.938(1)$
$\mathrm{La}(1)-\mathrm{Cl}(1)^{a}$	$2.956(2)$	$\mathrm{Nb}(1)-\mathrm{O}(3)$	$1.990(3)$
$\mathrm{La}(1)-\mathrm{Cl}(1)^{b}$	$2.911(2)$	$\mathrm{Nb}(1)-\mathrm{O}(4)$	$1.978(3)$
$\mathrm{La}(1)-\mathrm{O}(1)^{c}$	$2.340(4)$	$\mathrm{Nb}(2)-\mathrm{Cl}(1)$	$2.819(2)$
$\mathrm{La}(1)-\mathrm{O}(2)$	$2.669(4)$	$\mathrm{Nb}(2)-\mathrm{O}(1)$	$1.757(4)$
$\mathrm{La}(1)-\mathrm{O}(3)$	$2.529(3)$	$\mathrm{Nb}(2)-\mathrm{O}(3)$	$1.997(3)$
$\mathrm{La}(1)-\mathrm{O}(4)^{c}$	$2.655(3)$	$\mathrm{Nb}(2)-\mathrm{O}(4)^{d}$	$1.986(3)$

[^1]$R_{2}=0.026$. A final difference Fourier map revealed several expected large peaks ($0.5-$ $1.2 e$) near the La and oxygen atoms. A refinement of the multiplicity factors for the La, Nb, and Cl atoms revealed full occupancy at these sites. The atomic scattering factors and anomalous dispersion corrections were taken from the International Tables for X-Ray Crystallography, Vol. IV. Refined atom coordinates, thermal parame-

Fig. 2. Coordination sphere of $\mathrm{LaO}_{6} \mathrm{Cl}_{2}$ shown at 50% thermal ellipsoids.

Fig. 3. Coordination of oxygen and Cl atoms in $\mathrm{NbO}_{5} \mathrm{Cl}$ (50% thermal ellipsoids).
ters, and interatomic distances are presented in Tables II, III, and IV, respectively.

Discussion

The crystal structure of $\mathrm{LaNb}_{2} \mathrm{O}_{6} \mathrm{Cl}$ is shown in Fig. 1. All atoms have site symmetry (m) except $\mathrm{Nb}(1)$, which lies on an inversion center, and $O(3)$ and $O(4)$, which are in general positions. The La is eightfold coordinated with six oxygens and two chlorides in an arrangement which can be described as an oxygen $O(1)$ face-capped pentagonal bipyramid with the two chlorides occupying the apical positions (Fig. 2). The $\mathrm{La}-\mathrm{Cl}$ distances are identical to
those found previously in $\mathrm{LaWO}_{4} \mathrm{Cl}$ (2). The oxygens in the basal plane are all coordinated to three metal atoms and the $\mathrm{La}-\mathrm{O}$ distances range from 2.53 to $2.67 \AA$. However, the face-capping $O(1)$ is coordinated to only two metal atoms, and the $\mathrm{La}-\mathrm{O}$ distance is correspondingly shortened (2.340 \AA).
$\mathrm{Nb}(1)$ lies on a crystallographic inversion center and is octahedrally coordinated to six oxygen atoms. Here the $\mathrm{Nb}-\mathrm{O}$ distances range from 1.94 to $1.99 \AA$.
$\mathrm{Nb}(2)$, which is constrained to lie on a mirror plane, is also octahedrally coordinated (Fig. 3). The $\mathrm{Nb}-\mathrm{O}(1)$ distance which is trans to the Cl bond is again shortened by about $0.24 \AA$ to $1.76 \AA$ with respect to the remaining $\mathrm{Nb}-\mathrm{O}$ distances. This is similar to the shortened $\mathrm{Nb}-\mathrm{O}$ distance in NbOPO_{4} (6) $[1.78(1) \AA]$.

The lattice is built from $\mathrm{Nb}(1)$ chains of corner-shared octahedra linked by the second $\mathrm{Nb}(2)$ octahedra sharing the common $O(2), O(3)$ and $O(3), O(4)$ edges, respectively, around the La pentagonal basal plane.

References

1. L. H. Brixner, H.-Y. Chen, and C. M. Foris, J. Solid State Chem. 44, 99 (1982).
2. L. H. Brixner, H.-Y. Chen, and C. M. Foris, J. Solid State Chem. 45, 80 (1982).
3. L. H. Brixner, H.-Y. Chen, and C. M. Foris, Mater. Res. Bull., 12, 1542 (1982).
4. P. M. de Wolff, J. Appl. Crystallogr. 1, 108 (1968).
5. G. S. Smith and R. L. Snyder, J. Appl. Crystallogr. 12, 60 (1979).
6. J. M. Longo and P. Kierkegaard, Acta Chem. Scand. 20, 72 (1966).

[^0]: * Contribution No. 3181.

[^1]: * The subscripts a, b, c, d refer to equivalent symmetry operators, respectively: (a) $-x,-y, 1-z$; (b) $-\frac{1}{2}-x, \frac{1}{2}+y,-\frac{1}{2}+z$; (c) $-\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z$; (d) $-\frac{1}{2}-$ $x,-\frac{1}{2}+y, \frac{1}{2}+z$.

